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it to the synthesis of pseudoguaianolides and steroids. I We 

Claisen rearrangement and ene reaction applied in tandem and 

oxy-ene products during the course of the rearrangement of v 

reaction's potential for rapid assembly of functionalized [3 

We have previously described the tandem Cope-Claisen rearrangement and have applied 

describe in this Letter the 

report the presence of 

inyl ether substrates and the 

.3.0] bicycle-octanes. 
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Thermolysis' (330°C, 2 h) of vinyl ether B provided a 1:l mixture of aldehydes 2d and 3d -- 

(75%).3>4 The separated isomers were submitted to sequential reduction (LiA1H4, Et20), 

and hydrogenation to afford the same perhydro alcohol, requiring the isomers to he 

stereochemically equivalent. 5 The endo configuration of the ethyl group in aldehyde 2d 

was revealed by the appearance of Ha at 6 3.02 (Ja b = 9 Hz).~ Reduction of the reaction 
, 

time to one-half hour, revealed the presence of the two carbon-ene products 2d and 3d in -- 

addition to two oxy-ene products Land 5 in a ratio of 1.0/1.0/0.9 (2d/3d/5+6). When the ---- 

thermolysis was conducted at 250°C (0.5 h) the Claisen aldehyde &I appeared in the 

reaction mixture along with the four ene products (2d/3d/5+6/4d = 1.0/1.1/7.7+9.5/5.4). ----- 

Hydrogenation of the separated alcohols 5 and 6 provided isomeric alcohols requiring the 

difference between 5and $_ to lie in their respective stereochemistries and not the 

regiochemistry of the olefins. Alcohol 5 displayed its hydroxyl methine hydrogen as a 

multiplet at 6 4.03. Deuterium oxide exchange revealed the signal as a doublet (J = 11.8 

Hz) of triplets (J = 4.5 Hz), requiring a cis arrangement of the hydroxyl and vinyl group. 

On the other hand, the same resonance in alcohol 5 (6 3.68) appeared as a triplet (J = 

10.9 Hz) of doublets (J = 4.0 Hz) without deuterium exchange.6 

The presence7 of the oxa-ene products in the tandem reaction was further demonstrated 

by subjecting a mixture of alcohols 5 and 6 to thermolysis (330°C, 2 h) thereby 

the carbon-ene products 2d and 3d in a 1:l ratio. -- 

The Claisen rearrangement could he insulated from the ene reactions by low 

temperature thermolysis (2OO"C, 0.5 h) of E, thereby providing the aldehyde & 

sole product of the reaction. 

providing 

as the 

Thennolysis (33O"C, 0.5 h) of alcohol la in the presence of dimethylacetamide - 

dimethylacetal (DMADA) afforded a mixture of regioisomeric olefinic amides 2c and 3c -- in a 

1:l ratio (18%). Hydrogenation of the separated isomers once again gave a single perhydro 

derivative. The low yield in the tandem reaction was attributed to the Claisen 

rearrangement. Upon refluxing a solution of alcohol la in the presence of DMADA (xylene, - 

144"C, 6 h) the amide 4c was obtained in 26% yield. Submission of this intermediate of 
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the tandem reaction to thennolysis (330°C, 0.5 h) gave rise to the same mixture of amides 

in 85% yield. 

Further studies in this area concerning the effect of ring substituents and chain 

olefin geometry are under investigation. 
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